An Intelligent Algorithm for Solving Unit Commitments Based on Deep Reinforcement Learning
نویسندگان
چکیده
With the reform of energy structures, high proportion volatile new access makes existing unit commitment (UC) theory unable to satisfy development demands day-ahead market decision-making in power system. Therefore, this paper proposes an intelligent algorithm for solving UC, based on deep reinforcement learning (DRL) technology. Firstly, DRL is used model Markov decision process UC problem, and corresponding state space, transfer function, action space reward function are proposed. Then, policy gradient (PG) solve problem. On basis, Lambda iteration output scheme start–stop state, finally a DRL-based solution The applicability effectiveness method verified simulation examples.
منابع مشابه
Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملFICA: A novel intelligent crawling algorithm based on reinforcement learning
The web is a huge and highly dynamic environment which is growing exponentially in content and developing fast in structure. No search engine can cover the whole web, thus it has to focus on the most valuable pages for crawling. So an efficient crawling algorithm for retrieving the most important pages remains a challenging issue. Several algorithms like PageRank and OPIC have been proposed. Un...
متن کاملDeep Reinforcement Learning for Solving the Vehicle Routing Problem
We present an end-to-end framework for solving Vehicle Routing Problem (VRP) using deep reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy g...
متن کاملVision-based Deep Reinforcement Learning
Recently, Google Deepmind showcased how Deep learning can be used in conjunction with existing Reinforcement Learning (RL) techniques to play Atari games[11], beat a world-class player [14] in the game of Go and solve complicated riddles [3]. Deep learning has been shown to be successful in extracting useful, nonlinear features from high-dimensional media such as images, text, video and audio [...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainability
سال: 2023
ISSN: ['2071-1050']
DOI: https://doi.org/10.3390/su151411084